
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) II-Semester Main Examinations, January-2021 **Basic Electrical Engineering**

(Common to CSE & ECE)

Time: 2 hours

Max. Marks: 60

T T T T T T T T T T T T T T T T T T T	Note: Answer any NINE questions from Part-A and any THREE from Part-B Part-A $(9 \times 2 = 18 \text{ Marks})$								
Q. No.	Stem of the question	M	L	СО	PO				
1.	Define Kirchhof' 's Voltage & Current laws	2	1	1	1,2				
2.	List are the active and passive elements in DC circuits	2	1	1	1,2				

	b)	Using source transformation, solve the power delivered by 10V voltage source in the figure shown below	7	3	1	1,2
		5Ω ¥				
14.	a)	Derive the expression for the impedance, current and complex power in a RLC series circuit	7	3	1	1,2
	b)	In an AC circuit, $v = 200 \text{ Sin } (\omega t + 30^{\circ}) \text{ V}$, $i = 15 \text{ Sin } (\omega t - 30^{\circ}) \text{ A}$. Calculate the reactive power in the circuit.	7	3	1	1,2
15.	a)	Write the terminal voltage equations for different types of DC motors	7	2	2	1,2
	b)	A 220 V D.C shunt motor runs at 1400 RPM on no-load, drawing an armature current of 3 A from the supply. Solve the motor speed for an armature current of 60 A. It is given that Ra = 0.24 ohms and Rf=110 ohms.	7	3	2	1,2
16.	a)	Explain about power factor improvement methods in an electrical system	7	2	3	1,2
	b)	A single phase transformer with a ratio of 440/110V takes a no-load current of 5A at 0.2 p.f lagging. If the secondary draws a current of 120A on load at 0.8 p.f lagging, calculate the primary current	7	3	3	1,2
17.	a)	Explain the production of rotating magnetic field in three phase induction motor	7	2	4	1,2
	b)	Describe the construction and working of BLDC motor with a neat schematic diagram	7	2	4	1,2
18.	a)	State and explain the maximum power transfer theorem with a suitable example	7	2	1	1,2
	b)	In a series RC circuit, the values of $R=200~\Omega$ and $C=10~\mu F$. A sinusoidal voltage of 50 kHz is applied and the voltage across the capacitance is 4.5V. Calculate the voltage across the resistor and active power consumed by the circuit.	7	3	1	1,2
19.		Answer any two of the following:				
	a)	Explain the constructional details of a D.C. machine with a neat sketch	7	2	2	1,2
	b)	Draw and explain the phasor diagram of an ideal and practical transformer under no-load condition	7	4	3	1,2
	c)	Discuss the construction and working of variable reluctance stepper motor	7	2	4	1,

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	55
2	Knowledge on application and analysis (Level-3 & 4)	45
3	*Critical thinking and ability to design (Level-5 & 6)	0
	(*wherever applicable,)	